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ABSTRACT 
 

The degradation of concrete due to various hygro-chemo-mechanical actions is inevitable 

for the structures particularly built to store water. Therefore, it is essential to determine the 

material properties of dam like structures due to ageing in order to predict the behavior of 

such structures after certain age. The degraded material properties are calculated by 

introducing isotropic degradation index. The predicted material properties are used to study 

the behavior of aged dam-reservoir coupled system. Both the dam and infinite reservoir are 

modeled by finite elements. Displacement and pressure are considered as nodal variable for 

dam and reservoir respectively. The effect dynamic interaction between dam and reservoir 

are calculated in a coupled manner. The parametric study reveals that the responses of dam-

reservoir system are unexpectedly large at an age when system frequency matches with the 

exciting frequency. The outcomes of the present study indicate the importance of the 

consideration ageing effect of concrete exposed to water for the safe design of dam 

throughout its life time. 

 

Keywords: Hygro-chemo-mechanical; pine flat dam; dam-reservoir system; isotropic 

degradation index; fluid-structure interaction; finite element method. 

 

 

1. INTRODUCTION 
 

A concrete gravity dam is a massive submerged structure, and is built across the river mainly 

to harness the potential energy of river water for generation of hydroelectricity. For the 

design of an earthquake-resistant dam and the seismic safety evaluation of existing dam, 

hydrodynamic pressure is recognized to be major disturbing force on dam. Distribution of 

hydrodynamic pressure on the vertical face of rigid dam was first established by 

Westergaard [1], based on 2-D hydrodynamic theory. Since then, several investigators have 

contributed to the subject. Chopra [2] developed an analytical solution of the wave equation 
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to obtain the hydrodynamic pressure on the vertical face of the structures during earthquake. 

The hydrodynamic pressure distribution on the rigid structure having inclined upstream face 

of constant slope was presented analytically by Chwang [3]. All the analytical methods 

presented are suitable only for rigid structures. However, in most of the practical cases, the 

structures are elastic in nature and the estimated hydrodynamic will be more realistic if the 

interaction between an elastic structure and a compressible fluid has been incorporated 

properly in the analysis procedure. Some simplified analyses are available in which fluid-

structures interaction is studied in a decoupled manner.In this type of analysis, the fluid 

response is first obtained assuming the structure as rigid and resulting pressure field is 

imposed on the structure to obtain the response of structure. But the process lead to the 

development of unsound design,particularly, for the case of resonance between structures 

and fluid. In recent years,some researchers [4-9] are using indirect iterative method to deal 

the fluid- structure interaction problems. In this method, the hydrodynamic pressure in fluid 

domain is first determined considering structure as rigid. The resulting pressure exerts forces 

on the adjacent structure. Due to this additional forces structure undergoes new 

displacement. The fluid domain is solved again with the calculated displacement to get the 

response of the elastic structures. The process is continued till a desired level of convergence 

in both pressures and displacements areachieved. The major advantage of this method is that 

the accuracy of this method depends on pre assign tolerance value and the computational 

time at each time step becomes larger particularly for the case when the structure has been 

considered as flexible.To compensate the inadequacies of this analyses procedure, an 

efficient direct finite element approach is used to study the fluid–structure interaction 

problems [10-13]. In this method fluid and structure are coupled and solved as one system. 

To evaluate the dynamic behavior of the concrete gravity dam most of the researchers 

assumed that the modulus of elasticity of concrete of dam may remain constant throughout 

its design life. But, due to aging, the dams are subjected to severe environmentaleffects, 

which lead to degradation of the dam concrete.Since the dam face is in constant contact with 

water, concrete degradation due to hygro-mechanical loading is inevitable andshould be 

considered in the analysis procedure. Kuhl et al. [14] used chemo-mechanical model to 

obtain deterioration of cementitious materials. Gogoi and Maity [15] and Barman et al. [16] 

proposed different empirical equations based on experimental data to predict the modulus of 

elasticity at different ages of concrete. 

In this paper,the behavior of concrete gravity dam at its different ages has been studied 

considering dam-reservoir interaction in direct coupled way.In finite element analysis, the 

pressure and displacement are considered as independent nodal variablesfor reservoir and 

damrespectively.The infinite reservoir is truncated at a certain distance with an effective 

truncation boundary condition. The elasticity properties of concrete at different ages are 

determined from the hygro-chemo-mechanical degradation model. A computer code in 

MATLAB environment has been developed to obtain seismic response of concrete dam-

reservoir coupled system at its different ages. 
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2. THEORETICAL FORMULATION 
 

2.1 Theoretical formulation for dam 

The equation of motion of a dam like structure subjected to external forces can be written in 

standard finite element form as 

 

          M u C u K u F    (1)
 

 

where  M ,  C  and  K  are mass, damping and stiffness matrix of structure respectively, 

 u , u and  u are nodal accelerations, velocities and displacements,  F  is the nodal 

forces including hydrodynamic forces due to adjacent reservoir. In present investigation the 

structure has been discretized by two dimensional eight node rectangular elements. The dam 

body is assumed to be in a state of plane strain. The structural Rayleigh damping can be 

expressed as 

 

     C a M b K    (2)
 

 

where a  and b are called the proportional damping constants. The relationship between a ,

b  and the fraction of critical damping at a frequency  is given by the following equation. 

 

1

2

b
a 



 
   

 
 (3)

 

 

Damping constants a  and b are determined by choosing the fraction of critical damping 

1   and 2   at two different frequencies 1 & 2 and solving simultaneously equations a  and 

b . Thus, 
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Usually, 1 is taken as the lowest natural frequency of the structure, and 2 is the highest 

frequency of interest in the loading or response. In the present study, the fraction of critical 

damping for both the frequencies are chosen as the same i.e. 1  ’ = 2  ’ =   . Thus, above 

equation may be expressed as 
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2.1.1 Modeling of agedconcrete 

In normal practice, it is assumed that all the cement particles in concrete get hydrated in 28 

days and concrete get its full compressive strength. But in reality concrete gains some 

compressive strength with age beyond 28 days.On the other hand, the durability of concrete 

is considerably affected due to damage resulting from time variant external loading, 

moisture and heat transport, freez-thaw actions,chemically expansive reaction and chemical 

dissolution. Out of the wide range of environmental induced mechanisms, damage due to 

chemical and mechanical degradation is modeled here to get reasonable elasticity properties 

of concrete at different ages of concrete. 

 

2.1.2 Gain in compressive strength with time 

The gain of compressive strength of concrete is predicted by curve fitting on 50 years of 

experiential data published by Washa el al. [17]. The authors proposed four different curves 

for different concretes. All the curves showed an increase in compressive strength roughly 

proportional to the logarithm of age during the first 10 years and very small variation 

thereafter.Gogoi and Maity [15] carried out a least square curve fitting analysis on the set of 

compressive strength data published by Washa el al. [17] and proposed following equation 

to predict the gain of compressive strength with passage of time in years. 

 

( ) 3.57ln( ) 44.33f t t   (6)
 

 

where ( )f t is the gain of compressive strength in SI unit, t is the age of concrete in 

years.The value of static modulus of elasticity of concrete in SI unit is obtained by the 

expression proposed by Neville and Brooks [18]. 

 

0 5000 ( )E f t  (7)
 

 

2.1.3 Degradation model forconcrete 

In present analysis, the degradation of concrete strength is described by thereduction of the 

net area capable of supporting stresses. The lossof elastic properties of concrete follows as a 

consequence of degradation of concrete due to various environmental and loading 

conditions. The orthotropic degradation index is given by 

 
d

j j

gj

j

d
 




 (8)
 

 



SEISMIC RESPONSE OF AGED CONCRETE DAM CONSIDERING INTERACTION OF ... 

 

 

575 

where, ψj istributary area of the surface in direction j; and ψj
d is area affected by degradation. 

In a scale of 0 to 1, the orthotropic degradation index, dgj=0, indicates no degradation and 

dgj= 1, indicates completely degraded material. The index j=1,2 corresponds with the 

Cartesian axes x and y in the two dimensional case.The effective constitutive relationship for 

plane strain analysis can be expressed as 

 

 𝐷𝑔 =
𝐸0

 1 + 𝑚  1 − 2𝑚 
 

 1 − 𝑚 𝐿1
2 𝑀𝐿1𝐿2 0

𝑀𝐿1𝐿2  1 − 𝑚 𝐿2
2 0

0 0  1 − 2𝑚 𝐿1
2𝐿2

2/ 𝐿1
2+𝐿2

2 

  (9)
 

 

where, = (1 - dg1) and = (1 - dg2). In the above equation, E0 is the elastic modulus of the 

material without degradation. If dg1 = dg2 = dg, the isotropic degradation model is expressed 

as 

 

 𝐷𝑔 =  1 − 𝑑𝑔 
2
 𝐷  (10)

 

 

where [Dg] and [D] are the constitutive matrices of the degraded and un-degraded model 

respectively. 

 

2.1.4 Evaluation of degradation index 

The compressive strength of concrete is expected to decrease with its age due to chemical 

and mechanical degradation and thisdegradation is measured in terms of degradation index. 

In present work, the degradation due to hygro-chemo-mechanical actions is implemented 

and the total porosity,   which is the sum of the initial porosity 
0 , the porosity due to 

matrix dissolution 
c  

and the apparent porosity m  
is considered as the measurement of 

degradation index. Bangert et al. [19] and Kuhl et al. [14] have suggested the following 

relationship to relate these parameters. 

 

 0 c m       (11)
 

 

The parameter m  is obtained as 

 

 01m c gd      (12)
 

 

Here, dg is the scalar degradation index. Gogoi and Maity[15] proposed the following 

equation to obtained degradation index. 
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where 
0k  and k  are values of strain that represent the initial threshold degradation and the 

internal variable defining the current damage threshold depending on the loading history. 

and , ands c c  
 
are material parameters. 

k0 is given by f1/E0, where f1 is the static tensile strength and E0 is the elastic modulus of 

non-degraded material. For no degradation due to mechanical loading, k may be considered 

equal to k0. Bangert et al. [19] outlined the procedure to calculate the values of parameter α 

and βc. The values of αs is considered to lie between 1.0 and 0.0, indicating complete and no 

degradation respectively. Atkin [20] also made a study on the process of degradation and 

introduced a new parameter ζ. The value of ζ is zero for fresh concrete and ζ =1 for fully 

degraded concrete and proposed the following relationship. 

 

 
1

1
aT

    (14)
 

 

where Ta=design life of the structure. Integrating eq. (14) the following equation can be 

obtained. 
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1 a
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Replacing ζ with dg in eq. (15),the degradation index with time can be obtained as  

 

( )

1 a

t

T

gd e


   (16)
 

 

where t is the time corresponding to which degradation index is required. The relation 

between degraded modulus of elasticity, Eg and modulus of elasticity after strength gain at a 

particular age, E0 is given as 

 

0(1 )g gE d E   (17)
 

 

The dimensionless total porosity is obtained by the following equation 

 

0(1 ) a

t

T

gE E   (18)
 

 
2.2 Theoretical formulation for reservoir 

Assuming fluid to be linearly compressible, inviscidand with small amplitude irrotational 

motion, the hydrodynamic pressure distribution due external excitation is given as 
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2

2
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( , , ) ( , , )p x y t p x y t

c
   (19)

 

 

where c is the acoustic wave velocity in the water and  2 is the Laplacian operator in two 

dimensions. The pressure distribution in the fluid domain is obtained by solving Eq. (19) 

with the following boundary conditions. A typical geometry of fluid - structure system is 

shown in Fig. 1. 

i) At surfaceI 

Considering the effect of surface wave of the fluid, the boundary condition of the free 

surface is taken as 

 

1 p
p +  = 0

g y




 (20)

 

 

 
Figure 1. Geometry of dam-reservoir system 

ii) At surface II 

At fluid-structure interface, the pressure should satisfy 
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where 
i tae 

 is the horizontal component of the ground acceleration in which, is the 

circular frequency of vibration and 1i   , n is the outwardly directed normal to the 

element surface along the interface. f  
is the mass density of the fluid. 

iii) At surface III 

According to the technique proposed by Hall and Chopra [21] reservoir bottom 

absorption is modeled here. Neglecting the vertical acceleration at reservoir, reservoir 

bottom absorption may be expressed as: 

 

 ,0, ( ,0, )
p

x t qp x t
n


 


 (22)

 

 

Assuming a time harmonic behavior of pressure p(x,0,t) = p0(x,0,t) i te  ,the eq. (22) may 

be expressed as: 

 

 ,0, ( ,0, )
p

x t i qp x t
n







 (23)
 

 

where n is the outwardly directed normal to the element surface and q is a coefficient 

expressed as: 

 

1 1

1
q

C





 
  

 
 (24)

 

 

  is the frequency independent reflection coefficient
       iv) At surface IV

 In case of finite fluid domain, this surface is considered to be rigid and thus the boundary 

condition in this case will become as follows: 

 

 , , 0.0
p

L y t
n





 (25)

 

 
where L is the distance between structural surface and surface IV. In case of infinite fluid 

domain, the domain needs to be truncated at a suitable distance for the finite element 

analysis. The truncation boundary as proposed by Gogoi and Maity [22] has been 

implemented at truncation surface. 

The derivation of finite element formulation for the infinite reservoir water is given in 

Appendix A for ready reference. The finite element form for the reservoir domain is 

obtained as 
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          rE P A P G P F    (26)
 

 
2.3 Theoretical formulation for dam-reservoir system 

In the dam-reservoir interaction problems, the dam and the reservoir do not vibrate as 

separate systems under external excitations, rather they act together in a coupled way. 

Therefore, this fluid- structure interaction problem has to be dealt in a coupled way.A direct 

coupling approach is developed in the present study to obtain the response of dam-reservoir 

coupled system under external excitation.The coupling of dam and reservoir may be 

formulated in following way. 

The discrete structural equation with damping may be written as: 

 

dMu Cu Ku Qp F     (27)
 

 

The coupling term [Q] in eq. (27) arises due to the acceleration and pressure specified 

onthe dam-reservoir interface boundary and can be expressed as 

 

s s

T T

u u pN npd N nN d p Qp
 
    
 

  
   (28)

 

 

where, n  is the direction vector of the normal to the fluid-structure interface. Nu and Np are 

the shape functions of dam and reservoir respectively. Fd consists of external forces on dam. 

Similarly, due to external acceleration from dam body, the fluid equation may bewritten as: 

 
T

rEp Ap Gp Q u F     (29)
 

 

Now, the system of Eq. (27) and Eq. (29) are coupled in a second-order ordinary 

differential equations, which defines the coupled dam-reservoir system completely. These 

sets of coupledequations are solved on two different meshes of fluid and structure. The eq. 

(27) and (29)may be written as a set: 
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             
               

             
 (30)

 

 

For free vibration analysis, omitting all the damping terms, Eq. (30) can be written as 

 

0
0

0T

M u K Q u

Q E p G p

       
       

       
 (31)

 

 

Natural frequency of dam-reservoir system can be obtained by eigenvalue solution of the 

Eq. (31). However,the matrices in Eq. (31) are unsymmetrical and standard eigenvalue 
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solutions can not be used directly. So the above matrices are to be rearranged in a symmetric 

form. This can be accomplished by change of variables.Now introducing two variables 
tiueu ~ and 

tipep ~
, Eq. (32) can be written as  

 

0~~~ 2  uMpQuK   (32)
 

2 2 0TEp Q u Gp     (33) 

 

Again introducing another variable q  such that 

 
2p q  (34)

 

 

After substitution of above three equations in Eq. (31), the final form of this equation 

becomes 

 

2

0 0 0

0 0 0 0 0

0 0 0 T T

K M Q u

A E p

Q E G q



      
     

      
           

 (35)
 

 

Now, the above matrices in dam-reservoir system are symmetric and are in standard 

form. Further, the variable can now be eliminated by static condensation and the final dam-

reservoir system becomes symmetric and still contains only the basic variables. 

 

 

3. NUMERICAL RESULTS 
 

3.1 Validation of present algorithm 

To examine the accuracy of the proposed algorithm, a benchmark problem has been solved 

and compared with existing literature [24]. The material properties of the coupled system 

considered, in the present case are same as considered by Samii and Lotfi [24] and given in 

Table1. Geometric details and a typical finite element discretization for the dam-reservoir 

system are shown in Fig. 2. The infinite reservoir is truncated at a distance of 200m from the 

face of the dam and Somerfeld’s boundary condition is implemented at truncation surface 

for the radiating waves as considered by Samii and Lotfi [24]. The first five natural 

frequencies of the fluid-structure system are listed and compared with those values obtained 

by Samii and Lotfi [24] in Table 2. In the present analysis, the dam and reservoir domain are 

discretized by 5 × 10 (i.e., no. of element in horizontal direction, Nh = 5 and number of 

element in vertical direction, Nv = 10) and 12 ×8 (i.e., Nh = 12 and Nv = 8), respectively. A 

little variation in the results is observed from Table 2 which may be due to different finite 

element mesh sizes. However, the comparison of the results shows the accuracy of the 

developed computer code. 
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Table 1: Basic parameters of concrete and water 

Concrete modulus of elasticity 22.75GPa 

Concrete Poisson's ratio 0.2 

Unit weight of concrete 2480 kg/m3 

Pressure wave velocity 1440m/s 

Unit weight of water 981kg/m3 

 

 
Figure 2. Finite element mesh of dam-reservoir system 

 

3.2 Ageing effect on modulus of elasticity of concrete 

In normal practice, it is assumed that the concrete get its full compressive strength in 28 

days but in reality concrete gains some compressive strength with age beyond 28 days. In 

present study, this gain of compressive strength is determined from the curve proposed by 

Gogoi and Maity [15]. The scalar degradation parameter, dg is evaluated by Eq. (13) using 

following material properties m= 0.9, m = 1000, and 0 = 0.2 (Kuhl et al. [14]). The value 

of c may be considered as 0.2. The allowable degradation due to mechanically induced 

porosity can be predefined between 1.0 and 0.0, indicating 100 percent and no degradation 

respectively. Here, the value of as for a design life of 100 years is taken in the range of 0.4 to 

1.0. The variation of elastic modulus of damaged concrete with design life of 100 years is 

plotted and compare with those values of without degradation in Fig. 3. 
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Figure 3. Variation modulus of elasticity with age 

 

It is observed from Fig. 3 that if degradation of concrete is considered, the elastic 

modulus of the concretedecreases significantly and the decrease is more when the value of αs 

is equal to 1.0. 

 
Table 2: The first five natural frequencies of the dam-reservoir system 

Mode number 
Natural frequency (Hz) 

Present study Samii and Lotfi [24] 

1 2.5341 2.5267 

2 3.2712 3.2681 

3 4.5626 4.6651 

4 6.2326 6.2126 

5 7.9435 7.9181 

 

3.3 Ageing effect on frequency of dam-reservoir coupled system 

The ageing effect of concrete on the frequency of dam-reservoir system is studied 

considering Pine flat dam. For prediction of dynamic behavior of an ageing dam, a new 

paradigm is introduced defining extent of degradation of the dam due to the effect of hygro-

chemo-mechanical (HCM) effects. During the lifetime of the structure, the original safety 

margin will be reduced by deterioration of structural strength, reflected in the time evolution 

of the stiffness matrix, the most suitable assemblage of structural degradation information. 

These degradation of concrete in dam may result in loss of strength of the material along 

horizontal, vertical or in both the directions. A study is carried out to evaluate the response 

of the dam due to damage along the width and height of the dam. It is observed from Fig. 4 

that with an increase in damage caused by degradation, the natural frequency of the dam 

reduces. This behavior is mainly due to the reduction stiffnessof the structure with increased 
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degradation. Moreover, the decrement in frequency is high in case of isotropic damage 

model as compared to orthotropic degradation. The damage along vertical direction also has 

a similar effect as that in the isotropic case, as this is the primary source of stiffness.The 

effect isotropic degradation due tohygro-chemo-mechanical action for different design life 

structure is also studied. In Table 3 the frequency of Koyna dam of different design life is 

summarized. The fundamental frequency for a particular design life decreases with the 

increases of age of the dam. However, the decrease in frequency is comparatively less when 

the design life of the dam is higher. 

 
Table 3: Fundamental frequency of aged dam 

 
Fundamental frequency (rad/sec) 

No degradation in dam 17.34 

After 25 years, design life 50 yrs 11.33 

After 50 years, design life 50 yrs 7.98 

After 25 years, design life 100 yrs 14.02 

After 50 years, design life 100 yrs 11.33 

 

3.4 Response of dam-reservoir coupled system due to harmonic acceleration 

In the present section, the ageing effect of concrete in dam is studied considering Pine flat 

dam which is shown in Fig. 2. The study is carried out with following material and 

geometric properties: reservoir height =116.19 m;reservoir bottom reflection coefficients as 

(α) =0.5 and 0.95; age of concrete=immediate after construction, after 25 years and after 50 

years; wave velocity = 1440m/s; mass density of water=1000kg/m3; mass density of 

concrete=2400kg/m3and design life of the dam=100 years.For finite element 

implementation, the water is considered as compressible and inviscid and the infinite 

reservoir is truncated at a distance of 58m from the dam reservoir interface.The truncation 

boundary condition as proposed by Gogoi and Maity[22] is implemented at truncation 

surface.Thedam and reservoir are discretized by 6 × 10 (i.e., Nh = 6 and Nv = 10) and 4 ×8 

(i.e., Nh = 4 and Nv = 8) respectively. Maximum stresses developed in dam for three different 

values of excitations(TC/Hf=1,4 and 10) are listed in Table 3.The amplitude of the sinusoidal 

acceleration is assumed to be 1m/s2. The no. of time step per cycle of the excitation is taken 

as 32 after performing convergence study. The maximum stresses developed in the dam is 

presented in Table 4 correspond to the time 0.75T.In Table 4, it is observed that in case of 

TC/Hf =1 and TC/Hf =10, the maximum stress at early ages of concrete is larger than that of 

at later ages. This is mainly due to the larger value of elastic modulus of concrete at early 

age. On the other hand, for TC/Hf =4 the stress at the age of 50 years is largest compare to 

the values at the age immediate after construction and 25 years. This happened because the 

natural frequency of dam-reservoir coupled system for TC/Hf =4 at an age of 50 years is 

3.086Hz which is almost equal to the frequency of excitation 3.100Hz. 

Development of hydrodynamic pressures on dam are also studied for three different 

excitation frequencies (TC/Hf=1,4 and 10). Here, the hydrodynamic pressure coefficient is 

defined as /( )p fC P a H . The hydrodynamic pressure coefficient along the upstream face 

of the dam is plotted in Figs. 5–7 for different ages of dam. Results show that the pressure 
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coefficient decreases with the increase of age of the dam (i.e., Figs. 5 and 7). However, it is 

interesting to note that the pressure coefficient increases at the age of 50 years if the 

excitation frequency is considered as TC/Hf=4. As observed earlier, this happened due to the 

resonance of coupled system. 

 

 
Figure 4. Variation of frequency of dam with degradation 

 

Table 4: Maximum stresses in concrete dam 

TC/Hf Reflection coefficient Age of concrete Maximum normal stress (N/m
2
) 

1 

0.95 

Immediate after construction 3.279 × 10
5
 

25 years 3.252 × 10
5
 

50 years 2.893 × 10
5
 

0.5 

Immediate after construction 3.290 × 10
5
 

25 years 3.232× 10
5
 

50 years 2.877× 10
5
 

4 

0.95 

Immediate after construction 1.227× 10
6
 

25 years 1.154× 10
6
 

50 years 1.352× 10
6
 

0.5 

Immediate after construction 1.236× 10
6
 

25 years 1.141× 10
6
 

50 years 1.388× 10
6
 

10 

0.95 

Immediate after construction 4.723× 10
5
 

25 years 4.648× 10
5
 

50 years 3.911× 10
5
 

0.5 

Immediate after construction 4.752× 10
5
 

25 years 4.677× 10
5
 

50 years 3.929× 10
5
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Figure 5. Distribution of hydrodynamic pressure coefficient (Cp) on the face of the dam for 

TC/Hf=1 and α=0.95 

 

 
Figure 6. Distribution of hydrodynamic pressure coefficient (Cp) on the face of the dam for 

TC/Hf=4 and α=0.95 

 

 
Figure 7. Distribution of hydrodynamic pressure coefficient (Cp) on the face of the dam for 

TC/Hf=10 and α=0.95 
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3.5 Response of dam-reservoir coupled system due to earthquake acceleration 

Responses of same pine-flat dam due to earthquake acceleration have also been 

studiedconsidering reservoir bottom reflection coefficients,α as 0.95 at three different ages 

of concrete. Material properties and boundary condition at the truncation surface are similar 

to those consider in the previous case,except the truncation length, which is taken as 350m at 

which results are converging. The dam and reservoir are discretized by 4 × 10 (i.e., Nh = 4 

and Nv = 10) and 16 ×8 (i.e., Nh = 16 and Nv = 8) respectively. Horizontal component of 

Koyna earthquake (1967) acceleration is consider as external excitation. The power 

spectrum of this excitation is shown in Fig. 8. The response of dam-reservoir system is 

determined in terms of natural frequencies, crest displacements, hydrodynamic pressure 

coefficients (Cp) at the heel of dam, major and minor principal stresses developedat notch 

(i.e., point A) of dam. The first three natural frequencies for different ages of dam are given 

in Table 5. It is evident from Fig. 9 that the crest displacement at the age of 50 years 

increasesas the modulus of elasticity at this age decreases due to the degradation of concrete. 

It may be important to note that the magnitude of crest displacement is more at the age of 25 

years compare to that at the age of 50 years. This is because the frequency of 25 years aged 

dam-reservoir system, i.e., 21.34 rad/sec,is close to the dominant frequency of the 

earthquake acceleration, i.e., 22.06 rad/sec (Fig. 8). In case of developed hydrodynamic 

pressure (Fig. 10), similar conclusions can be made. 

The major and minor principal stresses at notch (i.e., at point A) are also plotted in Figs. 

11 and 12 respectively. It is observed that the principal stresses in the dam reduce 

significantly at the age of 50 years. It is interesting to note that both the principal stresses 

increase rapidly at the age of 25 years because of occurrence of resonance. 

 

 
Figure 8. Power Spectrum of earthquake data 

 

Table 5: Natural frequencies of dam-reservoir system with various ages 

Mode no 
Frequency (rad/sec) 

Immediate after construction 25 Years 50 Years 

1 24.01 21.34 19.36 

2 29.18 28.51 25.68 

3 39.89 34.16 29.89 
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Figure 9. Horizontal displacement of dam at top due to Koyna earthquake for different ages 

 

 
Figure 10. Hydrodynamic pressure at the heel of the dam due to Koyna earthquake for different 

age 

 

 
Figure 11. Major principal stress at point A of dam due to Koyna earthquake for different ages 
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Figure 12. Minor principal stress at point A of dam due to Koyna earthquake for different ages 

 

 

4. CONCLUSIONS 
 

The response of coupled dam-reservoir system at its different age under external excitation 

is presented. The hygro-chemo-mechanical degradation causes decreases in modulus of 

elasticity that leads to the changes in the behavior of dam with time. The dam remains 

relatively stiff at early age. As a result, the hydrodynamic pressure and stresses on dam have 

higher values. In general, the stresses in dam decrease with its age due to reduction of 

modulus of elasticity of concrete because of degradation. However, in the present study it is 

observed that the magnitude of stresses increases at the age of 50 years under harmonic 

excitation. Such type of behavior at the particular age is observed because of the excitation 

frequency which is close to the natural frequency of the aged dam-reservoir coupled system. 

Similar trend is observed at the age of 25 years due to earthquake excitation. At the age of 

25 years, the frequency of coupled system is quite closer to the dominant frequency of the 

earthquake excitation and as a result, the stresses on dam become unexpectedly larger which 

may causes failure of dam. Therefore, dam at a particular location should be designed in 

such a way that the natural frequency of dam-reservoir system at its different ages always 

remains less than the dominant frequency of previously occurred earthquake at that location. 
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APPENDIX A 
 

Finite element implementation for infinite fluid domain 

By using Galerkin approach and assuming pressure to be the nodal unknown the discretized 

form of equation (16) may be written as  

 

2
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0rj ri i ri iN N p N p d

c
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 
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where, Nrj is the interpolation function for the reservoir and Ω is the region under 

consideration. Using Green's theorem equation (A-1) may be transformed to  
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in which i varies from 1 to total number of nodes and Γ represents the boundaries of the 

fluid domain. The last term of the above equation may be written as 

 

  



 


d
n

p
NB rj

 (A-3) 

 

The whole system of equation (A-3) may be written in a matrix form as 

 

     E P G P F         (A-4)
 

 

where, 
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   2

1 T

r rE N N d
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(A-7) 

 

Here the subscript f, dw, fw and t stand for the free surface, dam–water interface, 

reservoir bottom–water interface and truncation surface respectively. As the surface wave is 

neglected 

 

  0fF   (A-8)
 

 

At the dam–reservoir interface if {a} is the vector of nodal accelerations of generalized 

coordinates, {Fdw} may be expressed as 

 

    dw dwF R a   (A-9)
 

 

In which, 

 

      
dw

T

dw r dR N T N d
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(A-10)

 

 

where T is the transformation matrix at dam water interface and Nd is the shape function 

of dam. At reservoir bottom-water interface  

 

   fw fwF i R p      (A-11)
 

 

where, 
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And at the truncation boundary, 
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After substitution all terms the equation (A-4) becomes 

 

          rE P A P G P F    (A-15)
 

 

where, 

 

 E E     (A-16)
 

   
1

( )m tA R
C
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(A-17)
 

[ ] [ ] [ ]fwG G i q R   (A-18) 

    r dwF R a   (A-19)
 

 

For any given acceleration at the dam-reservoir interface, eq. (A-15) is solved to obtain 

the hydrodynamic pressure within the reservoir. 

 

 


